Trajectory optimization based on recursive B-spline approximation for automated longitudinal control of a battery electric vehicle
- Autor:
- Datum: Prüfung: 11.07.2023
Abstract
Diese Arbeit beschreibt ein neuartiges Verfahren zur linearen und nichtlinearen gewichteten Kleinste-Quadrate-Approximation einer unbeschränkten Anzahl von Datenpunkten mit einer B-Spline-Funktion. Das entwickelte Verfahren basiert auf iterativen Algorithmen zur Zustandsschätzung und sein Rechenaufwand nimmt linear mit der Anzahl der Datenpunkte zu. Das Verfahren ermöglicht eine Verschiebung des beschränkten Definitionsbereichs einer B-Spline-Funktion zur Laufzeit, sodass der aktuell betrachtete Datenpunkt ungeachtet des anfangs gewählten Definitionsbereichs bei der Approximation berücksichtigt werden kann. Zudem ermöglicht die Verschiebeoperation die Reduktion der Größen der Matrizen in den Zustandsschätzern zur Senkung des Rechenaufwands sowohl in Offline-Anwendungen, in denen alle Datenpunkte gleichzeitig zur Verarbeitung vorliegen, als auch in Online-Anwendungen, in denen in jedem Zeitschritt weitere Datenpunkte beobachtet werden.
Das Trajektorienoptimierungsproblem wird so formuliert, dass das Approximationsverfahren mit Datenpunkten aus Kartendaten eine B-Spline-Funktion berechnet, die die gewünschte Geschwindigkeitstrajektorie bezüglich der Zeit repräsentiert. Der Rechenaufwand des resultierenden direkten Trajektorienoptimierungsverfahrens steigt lediglich linear mit der unbeschränkten zeitlichen Trajektorienlänge an. Die Kombination mit einem adaptiven Modell des Antriebsstrangs eines batterie-elektrischen Fahrzeugs mit festem Getriebeübersetzungsverhältnis ermöglicht die Optimierung von Geschwindigkeitstrajektorien hinsichtlich Fahrzeit, Komfort und Energieverbrauch.
Das Trajektorienoptimierungsverfahren wird zu einem Fahrerassistenzsystem für die automatisierte Fahrzeuglängsführung erweitert, das simulativ und in realen Erprobungsfahrten getestet wird. Simulierte Fahrten auf der gewählten Referenzstrecke benötigten bis zu 3,4 % weniger Energie mit der automatisierten Längsführung als mit einem menschlichen Fahrer bei derselben Durchschnittsgeschwindigkeit. Für denselben Energieverbrauch erzielt die automatisierte Längsführung eine 2,6 % höhere Durchschnittsgeschwindigkeit als ein menschlicher Fahrer.