FAST-LB CZ

Dr.-Ing. Clemens Zimmerling

  • Akademischer Mitarbeiter
  • Struktur-/Prozessoptimierung
  • Forschungsgruppe: 

    Umform- und Struktursimulation

Publikationen


Poster
2017
Zeit- und kosteneffiziente Prozess- und Produktentwicklung für den Hochleistungs-Faserverbundleichtbau im Rahmen der Nasspresstechnologie
Poppe, C.; Zimmerling, C.; Albrecht, F.; Hüttl, J.; Fial, J.; Engelfried, M.
2017, Januar 31. Marktplatz Leichtbau (2017), Ludwigsburg, Deutschland, 31. Januar 2017
Vorträge
2024
AI and Simulation for Efficient Composite Manufacturing Process Development
Zimmerling, C.
2024, März 4. Society for the Advancement of Material and Process Engineering Europe Summit (SAMPE 2024), Paris, Frankreich, 4. März 2024
2023
Machine Learning for Efficient Process Optimization in Textile Draping for Composite Production
Zimmerling, C.
2023, September 26. ITA Reinforced! Innovation Day: “Automation” and “Composite Testing and Sensor Integration” (2023), Aachen, Deutschland, 26. September 2023
Machine learning algorithms for efficient process optimisation of variable geometries at the example of fabric forming | Lionel Fourment PhD-prize for Industrial Research
Zimmerling, C.
2023, April 20. 26th International ESAFORM Conference on Material Forming (ESAFORM 2023), Krakau, Polen, 19.–21. April 2023
Techniken des Maschinenlernens zur effizienten Prozessoptimierung bei veränderlichen Bauteilgeometrien am Beispiel der Textilumformung
Zimmerling, C.
2023, März 22. 27. Nationales SAMPE Symposium Deutschland (2023), München, Deutschland, 21.–22. März 2023
2020
Rapid Determination of Suitable Reinforcement Type in Continuous-Fibre-Reinforced Composites For Multiple Load Cases
Zimmerling, C.; Fengler, B.; Wen, H.; Fan, Z.; Kärger, L.
2020, September 1. 23rd / 6th Joint Event: International Conference on Composite Structures - International Conference on Mechanics of Composites (ICCS / MECHCOMP 2020), Porto, Portugal, 1.–4. September 2020
2019
Zeit- und kosteneffiziente Prozess und Produktentwicklung für den Hochleistungs-Faserverbundleichtbau unterstützt durch Techniken des Maschinellen Lernens
Zimmerling, C.; Kärger, L.; Carosella, S.; Middendorf, P.; Henning, F.
2019, Mai 20. 6. Technologietag Hybrider Leichtbau (2019), Leinfelden-Echterdingen, Deutschland, 20.–21. Mai 2019
2018
Advanced Macroscopic Modelling Approaches for FE Composite Forming Simulation Using Abaqus
Dörr, D.; Poppe, C.; Zimmerling, C.; Krauß, C.; Schäfer, B.; Henning, F.; Kärger, L.
2018. SIMULIA Regional User Meeting (2018), Hanau, Deutschland, 4. Dezember 2018
Continuous Process Simulation for Continuous Fiber Reinforced Composites
Kärger, L.; Dörr, D.; Poppe, C.; Seuffert, J.; Bernath, A.; Galkin, S.; Zimmerling, C.; Henning, F.
2018. International VDI Conference - Simulation in Automotive Lightweight Engineering (2018), Amsterdam, Niederlande, 25.–26. April 2018
2017
Zeit- und kosteneffiziente Prozess- und Produktentwicklung für den Hochleistungs-Faserverbundleichtbau mittels Nasspresstechnologie
Poppe, C.; Fial, J.; Kärger, L.; Carosella, S.; Albrecht, F.; Zimmerling, C.; Draskovic, M.; Engelfried, M.
2017, Mai 30. 4. Technologietag Hybrider Leichtbau (2017), Stuttgart, Deutschland, 30.–31. Mai 2017
Proceedingsbeiträge
2023
Forming process optimisation for variable geometries by machine learning – Convergence analysis and assessment
Zimmerling, C.; Kärger, L.
2023. Material Forming 26th International ESAFORM Conference on Material Forming (ESAFORM 2023) Krakau, Polen, 19.04.2023–21.04.2023, 1155–1166, Materials Research Forum LLC. doi:10.21741/9781644902479-126
2021
Deep neural networks as surrogate models for time-efficient manufacturing process optimisation
Zimmerling, C.; Schindler, P.; Seuffert, J.; Kärger, L.
2021. ESAFORM 2021 - 24th International Conference on Material Forming, ULiège Library. doi:10.25518/esaform21.3882
Estimation of Load-Time Curves Using Recurrent Neural Networks Based On Can Bus Signals
Herz, D.; Krauß, C.; Zimmerling, C.; Grupp, B.; Gauterin, F.
2021. 14th World Congress on Computational Mechanics - WCCM & ECCOMAS Congress 2020 : virtual congress, 11-15 January, 2021 / IACM, ECCOMAS. Ed.: F. Chinesta, International Centre for Numerical Methods in Engineering (CIMNE). doi:10.23967/wccm-eccomas.2020.138
2019
An approach for rapid prediction of textile draping results for variable composite component geometries using deep neural networks
Zimmerling, C.; Trippe, D.; Fengler, B.; Kärger, L.
2019. Proceedings of the 22nd International ESAFORM Conference on Material Forming ; Vitoria-Gasteiz, Spain, 8–10 May 2019. Ed.: L. Galdos, Art.-Nr.: 020007, American Institute of Physics (AIP). doi:10.1063/1.5112512
2018
Application and Evaluation of Meta-Model Assisted Optimisation Strategies for Gripper-Assisted Fabric Draping in Composite Manufacturing
Zimmerling, C.; Pfrommer, J.; Liu, J.; Beyerer, J.; Henning, F.; Kärger, L.
2018. 18th European Conference on Composite Materials (ECCM 2018), Athen, GR, June 24-28, 2018
Optimisation of manufacturing process parameters using deep neural networks as surrogate models
Pfrommer, J.; Zimmerling, C.; Liu, J.; Kärger, L.; Henning, F.; Beyerer, J.
2018. 51st CIRP Conference on Manufacturing Systems, CIRP CMS 2018; Stockholm Waterfront Congress CentreStockholm; Sweden; 16 May 2018 through 18 May 2018. Ed.: T. Kjellberg, 426–431, Elsevier. doi:10.1016/j.procir.2018.03.046
A meta-model based approach for rapid formability estimation of continuous fibre reinforced components
Zimmerling, C.; Dörr, D.; Henning, F.; Kärger, L.
2018. Proceedings of the 21st International ESAFORM Conference on Material Forming : ESAFORM 2018 : Palermo, Italy, 23-25 April 2018. Ed.: L. Fratini, Art.Nr. 020042, American Institute of Physics (AIP). doi:10.1063/1.5034843
Zeitschriftenaufsätze
2024
Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers for non-stationary and nonlinear simulations on arbitrary meshes
Würth, T.; Freymuth, N.; Zimmerling, C.; Neumann, G.; Kärger, L.
2024. Computer Methods in Applied Mechanics and Engineering, 429, Artkl.Nr.: 117102. doi:10.1016/j.cma.2024.117102
A submodeling approach for efficient prediction of local temperature profiles in component-scale additive manufacturing
Frölich, F.; Hof, L.; Zimmerling, C.; Wittemann, F.; Kärger, L.
2024. The International Journal of Advanced Manufacturing Technology. doi:10.1007/s00170-024-14913-w
2023
Zeiteffiziente und datenfreie Bauteil- und Prozesssimulation mithilfe von Physics-Informed Neural Networks
Würth, T.; Prietze, A.; Zimmerling, C.; Krauß, C.; Kärger, L.
2023. NAFEMS-Magazin, 68 (4), 39–45
2022
Formability Assessment of Variable Geometries Using Machine Learning - Analysis of the Influence of the Database
Zimmerling, C.; Fengler, B.; Kärger, L.
2022. Key Engineering Materials, 926, 2247–2257. doi:10.4028/p-1o0007
Optimisation of manufacturing process parameters for variable component geometries using reinforcement learning
Zimmerling, C.; Poppe, C.; Stein, O.; Kärger, L.
2022. Materials and Design, 214, Art.-Nr.: 110423. doi:10.1016/j.matdes.2022.110423
2019
Virtual Product Development Using Simulation Methods and AI
Zimmerling, C.; Poppe, C.; Kärger, L.
2019. Lightweight Design worldwide, 12 (6), 12–19. doi:10.1007/s41777-019-0064-x
Virtuelle Produktentwicklung mittels Simulationsmethoden und KI
Zimmerling, C.; Poppe, C.; Kärger, L.
2019. Lightweight design, 12 (6), 12–19. doi:10.1007/s35725-019-0069-8
Development of a modular draping test bench for analysis of infiltrated woven fabrics in wet compression molding
Albrecht, F.; Zimmerling, C.; Poppe, C.; Kärger, L.; Henning, F.
2019. Key engineering materials, 809, 35–40. doi:10.4028/www.scientific.net/KEM.809.35
2018
Forming optimisation embedded in a CAE chain to assess and enhance the structural performance of composite components
Kärger, L.; Galkin, S.; Zimmerling, C.; Dörr, D.; Linden, J.; Oeckerath, A.; Wolf, K.
2018. Composite structures, 192, 143–152. doi:10.1016/j.compstruct.2018.02.041
Dissertationen
2023

Forschungsschwerpunkte

  • Koordination des Forschungsfeld 'KI-unterstützter Leichtbau'
  • Prozessoptimierung in der Umformung von Verstärkungstextilien
  • Anwendung von Techniken des Maschinenlernens zur Bauteil- und Prozessauslegung
  • Konstruktion und Struktursimulation endlosfaserverstärkter Bauteile